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OVERVIEW OF METHODS AND MEANS OF AUTOMATED
DETERMINATION OF THE CURRENT STATE OF BIOLOGICAL
OBJECTS

The beginning of the fourth industrial revolution and the rapid development of technologies — in particular
artificial intelligence, cloud computing and the Internet of Things — have given rise to a new era in agriculture,
which has been called “smart” or “digital” agriculture. Modern agriculture faces numerous challenges that
prevent it from obtaining the desired harvest. This paper overviews scientific works related to cultivated plants
grown around the world. It is shown that climate change, which causes droughts, floods, frosts or other adverse
weather conditions, soil depletion, water shortages and increased costs for fertilizers and pesticides, plant
diseases and the spread of pests — all these factors lead to significant crop losses. Traditional methods of
monitoring the condition of cultivated plants and soils do not allow for quick results and forecasting changes.
On the other hand, modern automated diagnostic systems provide farmers with the opportunity to quickly
obtain a wide range of necessary information about the current condition of cultivated plants. The rapid
development of digital technologies leads to the need to carry out a comprehensive review of existing methods
and means of determining the current state of biological objects, analyze their advantages and disadvantages,
degree of automation, accuracy, adaptability to different types of crops and growing conditions. The results of
this analysis will allow us to form substantiated recommendations for improving existing or developing new
automated systems for monitoring cultivated plants that will meet modern requirements for accuracy, speed
and scalability. Agriculture plays a key role in the production of food, fodder and industrial crops. However,
traditional farming methods are largely dependent on the workforce, which can seriously affect the efficiency
and sustainability of field production. In this regard, the introduction of field robots that can replace humans
in performing routine and labor-intensive tasks such as plowing, sowing, spraying, fertilizing, harvesting and
transportation is becoming extremely relevant. This will contribute to increasing the level of automation of
agricultural processes and help combat global food shortages. Modern agricultural robots combine innovative
technologies, including advanced robotics, sensors, artificial intelligence and big data analytics. Due to this,
they provide high-precision observation, autonomous decision-making, intelligent process management and
efficient task execution, which opens the way to a fully autonomous agriculture of the future. That is why, to
solve the existing problems of agriculture, it is necessary to create a comprehensive automated system that
would include modern solutions in the field of robotics and artificial intelligence.

Key words: automated collection and processing, artificial intelligence, neural networks, unmanned aerial
vehicles, biological objects.

Formulation of the problem. In the current con-
ditions of rapid development of biotechnology and
growing challenges associated with climate change,
monitoring of biological objects is becoming par-
ticularly relevant. Biological objects are all forms of
living organisms, covering a wide range: from micro-
organisms to highly organized animals and plants.
Their systematic study, observation and analysis
allow for timely detection of violations in the func-
tioning of biosystems and prevent potential threats to
both individual species and entire ecosystems [1].

Among the diversity of biological objects, plants
occupy a special place, which are the basis of life on
Earth. They not only form the basis of food chains,
but also provide oxygen, stabilize the soil, and regu-
late climatic conditions. In agriculture, plants are the
main sources of food, fodder and raw materials, and
that is why effective management of their condition
is a strategic task for the agricultural sector.

However, plants, like all biological organisms,
are susceptible to harmful factors, including dis-
eases, pests, and adverse weather conditions. These
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factors can significantly reduce yields, degrade prod-
uct quality, and cause economic losses. That is why
systematic monitoring of plant health and early diag-
nosis of pathologies are becoming key elements of
modern crop production. Early detection of signs of
diseases or pest infestation [2] allows for timely pre-
ventive or curative measures, avoiding large-scale
spread of the problem, and maintaining the produc-
tivity of agricultural systems.

The application of innovative technologies in this
area, such as remote sensing, computer modeling,
machine learning, and automated pathology detec-
tion systems, opens new opportunities for increasing
the accuracy and efficiency of diagnostics. Thus, the
transition from a general understanding of biologi-
cal objects to a targeted study of the state of plants
as key elements of agrobiosystems is not only logi-
cal, but also an extremely important step in ensur-
ing food security and sustainable development of
agriculture.

In the context of modern technologies, the use
of unmanned aerial vehicles (UAVSs) is of particular
importance for automated monitoring of the condi-
tion of plants, as they are an effective source of data
for analysis and diagnostics. Data obtained from
UAVs can be processed using automated diagnos-
tic systems based on artificial intelligence, com-
puter vision, and machine learning. Such systems
can detect signs of diseases, pest infestation, nutrient
deficiencies, or environmental stress factors in real
time [2]. This significantly increases the speed and
accuracy of agronomic decision-making, helps opti-
mize the use of plant protection products, and mini-
mizes costs. The use of UAVs in combination with
analytical platforms creates intelligent decision-mak-
ing support systems that are able not only to identify
problems but also to predict their development. As a
result, the integration of UAVs into the agricultural
monitoring system ensures the transition to precision
agriculture, which is based on the operational analy-
sis of large amounts of data and allows achieving
high efficiency with minimal environmental impact.

Analysis of recent research and publications.
Crop problems caused by diseases, pests and adverse
weather conditions are key challenges for mod-
ern agriculture. Climate change and rising global
temperatures, these factors tend to intensify, which
negatively affects the productivity of agricultural
systems. Foreign researchers are actively work-
ing to study these problems and develop effective
approaches to solving them.

In particular, the authors of work [3] note that
climate change significantly affects the spread and
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intensity of plant diseases. Changing temperature
regimes and uneven distribution of precipitation cre-
ate favorable conditions for the development of new
pathogens. The authors emphasize the need to inte-
grate modern methods of monitoring and forecasting
plant diseases for timely detection and control.

In work [4], the relationship between climate
change and the spread of crop pests is examined.
The authors note that an increase in average temper-
ature contributes to the expansion of the ranges of
some pests that were previously distributed only in
warm regions. Researchers recommend, in addition
to traditional methods and remote sensing technolo-
gies, to implement adaptive plant protection strate-
gies, in particular, breeding varieties resistant to spe-
cific pests.

Another approach to solving the problem of cli-
mate change and pests is presented in [5]. Climate
change significantly affects the biological charac-
teristics, distribution and probability of pest out-
breaks in various crops and on all types of land and
agricultural landscapes. Already now, up to 40% of
the world’s food resources are lost due to the activ-
ity of pests. In this regard, reducing their negative
impact is an extremely important task for ensuring
global food security, reducing the use of agricultural
resources and reducing greenhouse gas emissions.
That is why the authors proposed a climate-smart
plant protection system — an integrated interdisci-
plinary approach aimed at reducing crop losses from
pests, improving ecosystem functions, reducing the
intensity of emissions per unit of output and increas-
ing the resilience of agricultural systems to climate
challenges.

The issue of the impact of weather conditions
on crop yields is considered in the study [6]. The
authors note that to counteract existing problems, it
is necessary to implement adaptation and mitigation
strategies. These include both traditional and agro-
ecological practices that contribute to improving soil
health, efficient water use and carbon sequestration.
Climate-smart technologies and improved irriga-
tion systems will increase the resilience of agricul-
tural systems to change. Educational programs for
farmers and local initiatives play an important role.
Therefore, to ensure food security in the face of cli-
mate change, it is necessary to implement holistic
approaches to adaptation and sustainable develop-
ment of agriculture.

Plant diseases seriously threaten food security
and biodiversity, so timely and accurate diagnostics
are critically important. As the authors of [7] argue,
CRISPR/Cas systems have proven themselves as
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effective tools for detecting pathogens due to their
high accuracy and speed. However, there is a lack
of a comprehensive overview of their application in
phytopathology, which limits their practical imple-
mentation. In the article, the authors considered the
principles of CRISPR/Cas biosensors, examples of
detecting viruses, bacteria and fungi in plants, as
well as the prospects for the development of these
technologies for precision agriculture and effective
crop protection.

Climate change also contributes to the spread
of new diseases. In the study [8], an analysis of
the spread of wheat diseases under conditions of
increasing temperature was conducted. The authors
found that certain types of fungal diseases, such as
powdery mildew, become more aggressive under
increased humidity and warm weather. They rec-
ommend the use of combined protection methods,
including biological preparations and monitoring
using UAVs.

In the modern scientific community, much atten-
tion is paid to the application of artificial neural
networks and machine learning algorithms for the
classification of biological objects. Due to the abil-
ity to automatically learn from large amounts of
data and detect hidden patterns, these methods dem-
onstrate high efficiency in recognizing biological
samples, such as cells, tissues, or plant and animal
species.

Recent advances in the use of convolutional
(CNN) and graph convolutional networks have sig-
nificantly improved the classification of hyperspec-
tral images. However, the limited amount of data,
noise, high spectral variability, and complex spatial
structures remain serious obstacles, especially in
agriculture. To overcome these problems, the authors
of [9] proposed a new model — DRFG (dimensional-
ity reduction fuzzy graph network), which combines
the advantages of other networks. The system works
in two stages: first, pre-classification is performed
using CNN, after which the data is refined using
lightweight graph convolutional networks and clus-
tering. The authors argue that DRFG provides effec-
tive dimensionality reduction and high classification
accuracy of hyperspectral images, making it a prom-
ising technology for precision agriculture.

The intensive modernization of agriculture
requires effective solutions for accurate and opera-
tional monitoring of pests. Traditional observation
methods are inferior in efficiency, and existing deep
learning models are often unstable in complex con-
ditions. In response to these challenges, the authors
of [10] proposed an innovative monitoring system

that combines an advanced convolutional neural
network (SAO-CNN) with swarm intelligence for
controlling drones. The system uses adaptive con-
volutional layers, self-supervised learning, and
ConvLSTM for effective video data analysis, and
the ACO and PSO algorithms optimize UAV tra-
jectories and task distribution. As a result, a clas-
sification accuracy of 91.2% was achieved, flight
time was reduced by 29.2%, and energy consump-
tion was reduced by 32%. The solution outperforms
popular models (YOLO, ResNet, etc.) and provides
high real-time performance, making it an effective
tool for precision agriculture and sustainable crop
management.

In the study [11], a forest image segmentation
model based on CNN with U-Net architecture was
implemented and evaluated. The algorithm involved
preprocessing satellite images and corresponding
masks: resizing, normalization, and division into
training and test sets. The model consisted of an
encoder, decoder, and pass-through connections, and
was trained using the binary cross-entropy loss func-
tion and the Adam optimizer, with early stopping
and checkpoint retention mechanisms. To assess the
quality of segmentation, the authors used IoU, Dice,
accuracy, completeness, specificity, and F1-score
metrics. The study confirmed the effectiveness of
U-Net in segmenting forest areas and the importance
of high-quality data selection for training.

In the study [12], deep learning models VGGI16,
Inception v3, ResNet50 and a specially designed
CNN were compared for the detection of cauliflower
diseases common in countries such as Bangladesh
and India. The models were trained using transfer
learning on the VegNet dataset and evaluated using
the following metrics: accuracy, loss and F1 score.
ResNet50 showed the highest accuracy of 90.85%,
while the special model achieved 89.04%. Based
on the results, the authors conclude that deep learn-
ing, in particular ResNet50, is an effective tool for
automatic disease detection, which can improve crop
yields and strengthen food security.

Pine wilt disease threatens ecosystems and
causes economic losses, so its early detection is
critically important. The authors of [13] proposed
a PWDViTNet model for detecting early signs of
infection. It is based on ShuffleNetV2 (as an effi-
cient CNN architecture) and Vision Transformer,
which combine local and global feature modeling.
The model also uses multi-scale feature fusion to
more accurately focus on infected areas. The authors
tested the model on images collected by UAVs in
Laoshan National Park. It achieved an accuracy
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rate of 72.6%, which is 4.1% higher than the base-
line ShuffleNetV2 model, with a slight increase in
computational cost and size. The authors claim that
PWDViTNet demonstrates effectiveness in early
detection of pine wilt disease and can potentially be
used for broader monitoring in agriculture.

Weeds significantly reduce crop yields, and the
emergence of herbicide-resistant species compli-
cates their control. Effective weed management
requires targeted, species-specific strategies that
can be implemented using machine learning tech-
nologies. However, due to the biological diversity of
weeds and changing environmental conditions, their
accurate detection remains challenging. The aim
of the study [14] was to create an annotated image
database of five weed species (common nettle, dan-
delion, water hemp, Palmer’s amaranth, lamb’s quar-
ter) and evaluate the performance of the YOLOvVS-—
YOLOvI1 models and fast R-CNN. For this
purpose, 2348 field images were collected, which
underwent pre-processing and annotation. As a
result, the authors concluded that the YOLO models
demonstrate better suitability for accurate and fast
real-time weed detection in agriculture.

The use of UAVs in agriculture is one of the key
tools of modern precision agriculture, which allows
to significantly increase the efficiency of agricul-
tural land management. However, despite numerous
advantages, the use of UAVs in this area is accom-
panied by several problems that need to be solved.
This overview considers only the main challenges
described in modern scientific works.

Due to the increase in the cost of labor, agricul-
tural robots are becoming a key element of “smart”
agricultural production, replacing people in complex
tasks such as harvesting, weeding, pruning and pol-
lination. An important component of such robots
is hand-eye coordination, which allows them to act
in real time based on visual data. Unlike industrial
robots, agricultural robots operate in an unstable natu-
ral environment, which makes it difficult to accurately
recognize targets and avoid obstacles. It is important
to achieve a balance between accuracy and speed of
task performance. Despite significant progress, robots
still face challenges, especially in object recognition
and adaptation to changing conditions. Therefore, the
authors [15] concluded that further research should
focus on imitating human movements and vision,
improving self-learning capabilities, detecting errors
in real-world environments, and improving systems
with multiple sensors and manipulators.

In [16], an efficient method for accurate detec-
tion and localization of banana clusters in natu-
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ral environments is proposed, aimed at applica-
tions in harvesting robots. Existing methods have
the following limitations: many parameters and
insufficient performance. To address these prob-
lems, a lightweight Slim-Banana model based on
the improved YOLOVSI architecture is developed.
For 3D banana localization, the model is combined
with a RealSense depth sensor and TOF (time of
flight) technology. It is deployed on an Nvidia Orin
NX device. The model achieves 94.7% accuracy,
94.8% recall, and 98% mAP with an inference
time of 113.6 ms. The average localization error is
approximately 13 mm across all coordinates. The
authors claim that this is the first known solution
implemented on peripheral devices that demon-
strates high accuracy and efficiency even in difficult
horticultural conditions.

Remote control of multiple agricultural robots
increases the efficiency of field work, but remains a
challenging task due to the remoteness of the equip-
ment and changing terrain conditions. Estimating
the progress of work is complicated by the differ-
ence in task completion times, and the issue of syn-
chronizing the speed of multiple robots in unsta-
ble field conditions are still insufficiently studied.
In [17], a remote monitoring system is proposed that
allows assessing the progress of work and manag-
ing field work. The key feature is the calculation of
the remaining task completion time in real time and
automatic adjustment of the robot speed depend-
ing on the current progress. The authors tested the
system on real machines: in online simulation, the
delay was ~100 ms (enough to safely control up to
50 robots), and in real conditions, it was about 2 s.
Thanks to automatic speed adjustment, deviations
from the schedule decreased from 26-33 s to only
4-13 s, which reduced the error in task performance.

The authors of the study [18] proposed an auton-
omous navigation method for agricultural robots
designed to work on high beds. The method com-
bines two approaches: movement along set route
points and orientation along the beds themselves,
which allows the robot to move efficiently without
complex trajectory planning, even in environments
with minimal landmarks. The robot uses LiDAR
data for navigation. The method was tested in a
virtual environment and on a real strawberry farm,
where the robot demonstrated stability with a devia-
tion of no more than £0.05 m and £5° relative to the
bed. The results confirm the high accuracy and reli-
ability of the proposed system. The authors of the
study also emphasize the importance of preliminary
modeling, which allows optimizing the characteris-
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tics of the robots and navigation algorithms before
real implementation. It was shown that even parame-
ters such as the LiDAR range significantly affect the
stability of movement. The authors’ future research
will focus on modeling more complex conditions—
with uneven surfaces and variability of farm land-
scapes—to improve the accuracy and practical use of
field robots.

With the development of autonomous naviga-
tion, agricultural robots are increasingly being used
in the agricultural sector. One of the key challenges
is dynamic obstacle avoidance in complex field
conditions. The popular DWA (Dynamic Window
Approach) algorithm allows local obstacle avoid-
ance, but its effectiveness is limited by fixed weight
coefficients, which reduces adaptability to environ-
mental changes. To solve this problem, the authors
of [19] integrated the TD3 (Twin Delayed Deep
Deterministic Policy Gradient) deep learning method
into DWA. Thanks to this, the weights of the evalu-
ation function adapt to the situation in real time,
improving the flexibility and accuracy of navigation.
Simulations and field tests have shown that the new
TD3-DWA approach successfully avoids obstacles
in more than 90% of cases, outperforming the clas-
sic DWA. This makes it a promising solution for safe
and efficient navigation of agricultural robots.

Agricultural  multi-robot  task  assignment
(AMRTA) is a key direction for improving the
efficiency of robotic agriculture. In the study [20],
the AMRTA task was first presented as a travel-
ing salesman problem with workload constraints
(NWC-MTSP), which allows to minimize the
maximum working time of individual robots and
evenly distribute the load. The authors proposed a
new method NWC-APONet, which combines graph
neural networks and reinforcement learning for
optimal task assignment. Experimental verification
on real and synthetic agricultural data showed high
efficiency of the model, confirming its practical
value for multi-robot control systems in the agricul-
tural sector.

Task statement. Due to the urgency of the prob-
lem of ensuring the stable development of the agro-
industrial complex and the growing risks associated
with diseases of cultivated plants, the impact of pests
and adverse weather conditions, there is an objective
need to develop effective means of monitoring bio-
logical objects, in particular plants. Timely diagnos-
tics of changes in the physiological state of plants
is the key to preserving the harvest, increasing the
efficiency of agrotechnical measures and minimizing
financial losses.

The rapid development of digital technologies
leads to the need to carry out a comprehensive over-
view of existing methods and means of determining
the current state of biological objects, analyze their
advantages and disadvantages, the degree of auto-
mation, accuracy, adaptability to different types of
crops and growing conditions. The results of this
analysis will allow us to form substantiated recom-
mendations for improving existing or developing
new automated systems for monitoring cultivated
plants that will meet modern requirements for accu-
racy, speed and scalability.

Outline of the main material of the study.
Determining the current state of biological objects,
in particular plants, is critically important for
increasing the efficiency and sustainability of agri-
cultural production. Modern agricultural production
requires operational and accurate monitoring, which
allows for timely detection of problems, optimiza-
tion of resource use and increase in yield.

Although traditional monitoring methods, in
particular visual inspection of fields, remain wide-
spread, they are not effective in large areas due to
the high time consumption, the need for significant
labor resources and low accuracy. In contrast, auto-
mated solutions, based on UAVs, sensor systems and
artificial intelligence tools, open new opportunities
for farmers.

Today, machine learning and neural networks
play a key role in improving the analysis of plant
health. The overview showed that one of the most
widespread is the convolutional neural network
and its variations. Thanks to their ability to process
large amounts of data, these mathematical models
can accurately (from 70% to 99% depending on the
specific type of neural network, the training data set
and environmental conditions) recognize disease
symptoms, detect pests, analyze vegetation changes
and assess stress factors (such as lack of water or
nutrients). Combining these technologies with UAV
images allows you to create detailed field maps with
precise positioning of problem areas. This allows for
localized applications of fertilizers, water or plant
protection products, which reduces costs and mini-
mizes damage to the environment.

However, despite significant advantages, an over-
view of scientific works showed that there are sev-
eral technical barriers that complicate the effective
use of UAVs for precise plant monitoring. Among
the main problems are navigation limitations. In par-
ticular, drones can lose GPS signal in areas with
poor coverage or in conditions of obstacles (dense
plantings, buildings, complex terrain). In such situ-
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ations, alternative navigation methods are needed,
such as visual SLAM navigation or inertial systems,
which are complex and expensive to implement. In
addition, the limited flight time due to battery capac-
ity limits the size of the area that can be covered in
a single flight, which creates difficulties when cover-
ing large areas.

Among the existing problems, a significant chal-
lenge is the delay in data transmission between the
UAV and the base station, especially when perform-
ing complex tasks in real time. Even small delays
in receiving or processing commands can lead to
inaccuracies in the flight path, missed target areas,
or errors in image collection. The problem is exacer-
bated when using wireless communication channels
in conditions of interference or over long distances,
which reduces the responsiveness of the control sys-
tem. This limits the ability of the drone to effectively
operate in the online correction mode, which is criti-
cal for precision agricultural operations.

In addition, the accuracy of plant classification
depends largely on the quality of image collection.
Factors such as lighting variations, shadows, leaf
movement due to wind, weather conditions (fog,
dust), as well as differences in crop growth phases
can complicate recognition. Even modern neural net-
works can make mistakes in conditions of excessive
visual similarity between species or when training
samples were limited.

Another major challenge remains the accessibil-
ity of modern solutions for small and medium-sized
farms. The high cost of equipment (in particular,
UAVs, sensors and software) and the need for spe-
cialized skills to operate them hinder widespread
implementation. This highlights the need for gov-
ernment support, subsidies and training programs
that will help farmers integrate innovations into their
operations.

Thus, the combination of high technology, UAVs
or ground robots, artificial intelligence and auto-
mated monitoring systems has the potential to sig-
nificantly transform modern agriculture, making

it more accurate, environmentally sustainable and
economically profitable. The development of such
automated system is an urgent task today, therefore,
in further work, the design and development of an
automated system for determining the current state
of biological objects will be carried out.

Conclusions. Agriculture is the basis of the pro-
duction of food, fodder and industrial crops. How-
ever, traditional approaches to its management
largely depend on the workforce, and its shortage
can negatively affect the efficiency and stability of
agricultural production. An overview of scientific
works has shown that traditional methods of moni-
toring cultivated plants and soil quality do not pro-
vide the necessary information in a short period of
time, which can be critical for the survival of the
crop.

The use of robotic systems contributes to an
increase in the level of automation of agricultural
processes and is a promising tool for overcoming
global challenges of food security. It has been shown
that modern robots integrate sensors, artificial intel-
ligence and data analytics, which allows achieving
high accuracy in monitoring, autonomy in decision-
making and efficiency in performing tasks. This cre-
ates prerequisites for the development of smart, fully
autonomous agriculture.

An overview of scientific works has also shown
that the use of UAVs is limited by technical and eco-
nomic factors. Loss of GPS signal in dense vegeta-
tion, short flight time due to limited battery capacity,
and communication delays with the base reduce the
accuracy of data collection. Additionally, changing
lighting, wind, and different phases of crop growth
complicate image analysis, and the high cost of
equipment and the need for specialized skills limit
implementation for small farms. To overcome the
existing challenges of the industry, it is advisable to
develop an integrated automated system that com-
bines advanced solutions in the field of artificial intel-
ligence and robotics, ensuring adaptability, scalability,
and efficient management of agricultural production.
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Huodyasuuk C.0., llexemaxa B.B. OIVIA METOAIB TA 3ACOBIB ABTOMATU30BAHOT' O
BU3HAYEHHS ITIOTOYHOI'O CTAHY BIOJIOI'TYHUX OB’EKTIB

Tlouamox wemeepmoi npomuciogoi pegontoyii ma cmpimMKuil po36UmoK MmexHoa02il — 30Kpema wmyyHo20
iHmenexkmy, Xmaprux ooduucieHv i InmepHemy peuell — cmaiu NOWMoOEXom 00 HOBOI epu 8 CLIbCbKOMY
2ocnooapcmsi, Wo ompumana Hazey «po3ymuey abo «yugposey 3emaepoocmeo. CyuacHe cCinbcbke
20CN00ApPCMe0 CMUKAEMbCS 3 YUCTEHHUMU BUKAUKAMU, SIKI NEPeuKoONCAioms OMPUMAHHIO OadICAH020
epodicaio. Y Oanili pobomi npoedeHo 0210 HAYKOBUX poOim, N08 A3aHUX 3 KVILIMYPHUMU POCTUHAMU, SIKI
8UPOWYIOMb Y 6cboMy cimi. Iloxkazano, wo KaimMamuyni 3MiHU, SIKi CHPUYUHAIOMb 3ACYXU, NOGEHI, 3AMOPO3KU
Yy MW HeCNpUsAMaUGi NO20O0HI YMOSU, GUCHANCEHHS IPYHMIB, Hecmaua 600HUX pecypCié i 3pOCmAamnHs.
sumpam Ha 000pusa ma necmMuyuou, POCIUHHI X6OpPOOU Ma NOWUPEHHS WKIOHUKIG — yci yi ¢haxmopu
npU3B00aMb 00 3HAYHOI empamu epodcaro. Tpaduyilini Memoou MOHIMOPUHEY CHIAHY KYIbIYPHUX POCIUH
ma Ipynmie He 0arOmv 3M02y WEUOKO OMPUMAMU Pe3yibmamu ma npoeHozyeéamu 3minu. 3 iHuio2o 00Ky,
CYUACHI asmMoMamu308ami OlaeHOCMUYHI CUCEMU HAOAOMb A2papisiM MONCIUBICIb WEUOKO2O OMPUMAHHS
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WUPOKO2O KOAA HeoOXiOnoi ingopmayii npo nomoyHull cman KYIbMypHUX POCAUH. 3 027150y HA CMPIMKULL
PO36UMOK YUPDPOBUX MEXHONO02IU, HeOOXIOHO 30ILUCHUMU KOMIIEKCHU 0271510 ICHYIOUUX Memodig i 3acodie
BUBHAYEHHST NOMOYHO20 CMAHY 0IoN02iYHUX 00 €KMis, Npoananizyeamu ix nepeeazu ma HeOONIKU, CHYNIHb
asmomamu3ayii, MouHicmv, a0anmueHicmes 00 PI3HUX TUNIE KYIbmyp i ymos eupowgyeanus. Pezynomamu
Yb020 amanizy 003601Mb cHOpMysamu OOIPYHMOBAHI peKoMeHOayii w000 B00CKOHALEHHA ICHYIOUUX abo
PO3POONEHHSL HOBUX ABMOMAMUZ0BAHUX CUCTNIEM MOHIMOPUHZY KVILIMYPHUX POCIUH, WO GION0GIOAMUMYMb
CYYaAcHUM GUMo2am 00 MOYHOCMI, WeUuoKodii ma macwmabdosanocmi. Cinbcovke cocnodapcmeo gidiepac
KAIOY0BY POJIb Y SUPOULYEAHHT NPOOYKIIE XAPUYBAHHS, KOPMOBUX A MeXHIYHUX Kyavmyp. IIpome mpaouyitini
Memoou 8e0enHs 20CN00APCMed 3HAUHOI MIPOIO 3A1exNcams 6i0 6enuKoi Kintbkocmi pobouoi cunu, necmava
SAKOI MOdice Cepuio3HO BNAUHYMU HA eeKMUBHICTNG | CMAOIILHICIb NOTLOB8020 GUPOOHUYMEA. Y 36 'A3KY 3 YUM
HAO36UYAIIHO AKINYANLHUM CINAE 8NPOBAOIHCEHHS NOALOBUX POOOMIE, 30AMHUX 3AMIHUMU TOOUHY ) BUKOHAHHT
PYMUHHUX | MPYOOMICIKUX 3A80AHb, MAKUX K OPAHKA, Cis0d, 0ONPUCKYBAHHI, GHECEHHs 000pUs, 30UpanHs.
8podIcailo ma mpancnopmyeanns. Lle cnpusmume niosuwennio pigHs agmomamusayii CilbCbko2ocno0apcbKux
npoyecie ma 0onomodice 6opomucs 3 2n00arbHuM oediyumom npodosonrvcmea. Cyuachi azpapmi pobomu
HOEOHYIOMb THHOBAYIIHI MEXHONO2II, BKIIOUAYU Nepedo8y pOOOMOMEXHIKY, CeHCOpU, WMYYHULL IHmMeleKm i
AHANIMUKY 6eIUKUX OQHUX. 3a805KU YbOMY BOHU 3A0€3NeUYI0mMb GUCOKOTNOUHE CNOCINEPECEHH S, d8MOHOMHE
NPpUtHAMMS piuletb, po3yMHe YIPAGIIHHA NPpoyecamu ma e@exmuene GUKOHANHS 3a80aHb, W0 BIOKPUBAE ULIAX
00 NOGHICMIO ABMOHOMHO20 CLIbLCLKO2O 20Ccnodapcemea manubymuvoco. Came momy OJis GUPTUEHHS HASGHUX
npobiem CilbCbKo20 20CH00apcmea HeoOXIOHO CMEOpUmMU KOMNIEKCHY aAGMOMAMU306AHY CUCeMY, SKd
sKIOYANA O 8 ceDe CyudcHi piulenHs 6 001acmi pOOOMOMEXHIKU MA WIMYYHO20 THMELEeKM).

Knwuogi cnosa: asmomamu3zoeanuii 30ip ma 06pobKa, wimyunui iHmenexm, HeuporHi mepedici, 6e3ninomHi
qimanvi anapamu, OioiociuHull 00 €Km.
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